

для измерения поверхностного сопротивления в соответствии с основным стандартами DIN, EN, IEC и ASTM


HOW 1 с Milli-TO 3 и GP 15 (опция)

- 2 проводящие полоски из эластомера;
- подходит для измерений на поверхности объектов, плоских образцах, например. лакированных пластинах или пластиковых пленках:
- нет необходимости в обработке образца специальным проводящим составом;
- походит для быстрого проведения измерений без проводящего состава;
- так же подходит для измерения сопротивления выше 1000 Ом при испытательном напряжении в 1 Вольт;
- длина измерения 100 мм
- интервал 10 мм
- дополнительное защитное кольцо для предотвращения выброса тока электрода да поверхность образца;
- подключается к приборам Milli-TO 3 или ТО-3;
- диапазоны:
 - 10⁵ до 10¹³ Ом при испытательном
 - напряжении в 100 В 10³ до 10¹³ Ом при испытательном напряжении в 1

Ручной электрод HOW 1 был разработан специально для измерения сопротивления на поверхности образца.

Вместе с прибором Milli-TO 3 или TO-3 имеется возможность точных измерений в высокомном

Используя полоски из эластомера, электрод удобен для проведения измерений на таких плоских образцах как: лакированные пластины или пластиковые пленки. Нет необходимости в обработки поверхности токопроводящим составом, следовательно, не происходит никаких загрязнений поверхности образца. Собственный вес электрода гарантирует оптимальный контакт с образцом. Возможно использование защитного кольца для предотвращения выброса тока электрода на поверхность образца и ошибок в измерениях. Дополнительная заземленная пластина позволяет использования прибора.

HOW 1 with protection ring

OW 3

для измерения поверхностного сопротивления в соответствии с основным стандартами DIN, EN, IEC и ASTM

- 2 проводящие полоски из эластомера:
- подходит для измерений на поверхности объектов, плоских образцах, например, лакированных пластинах или пластиковых пленках;
- нет необходимости в обработке образца специальным проводящим составом;
- походит для быстрого проведения измерений без проводящего состава;
- так же подходит для измерения сопротивления выше 1000 Ом при испытательном напряжении в 1 Вольт;
- длина измерения 50 мм
- интервал 5 мм
- область измерения 2,5 cм²
- дополнительное защитное кольцо для предотвращения выброса тока электрода да поверхность образца;
- подключается к приборам Milli-TO 3 или ТО-3;
- диапазоны:
 - 10⁵ до 10¹³ Ом при испытательном
 - напряжении в 100 B 10^3 до 10^{13} Ом при испытательном напряжении в 1

Ручной электрод HOW 3 был разработан специально для измерения сопротивления на поверхности образца.

Вместе с прибором Milli-TO 3 или TO-3 имеется возможность точных измерений в высокомном

Используя полоски из эластомера, электрод удобен для проведения измерений на таких плоских образцах как: лакированные пластины или пластиковые пленки. Нет необходимости в обработки поверхности токопроводящим составом, следовательно, не происходит никаких загрязнений поверхности образца. Собственный вес электрода гарантирует оптимальный контакт с образцом. Возможно использование защитного кольца для предотвращения выброса тока электрода на поверхность образца и ошибок в измерениях. Дополнительная заземленная пластина позволяет использования прибора.

HOW 3 с заземленной пластиной (опция) и прибором Milli-TO 3

HOW 3 и защитное кольцо

HOW 16

для измерения сопротивления на поверхности плоских или имеющих определенную форму образцах

Электрод HOW16 производит измерения поверхностного сопротивления в соответствии со стандартами EN, DIN и IEC.

65 высокоточных покрытых золотом контактов гарантируют устойчивый контакт даже с поверхностями, имеющими определенную форму.

Область для вычисления поверхностного измерения составляет 16,5 см².

Вместе с прибором Milli-TO 3 или TO-3 имеется возможность точных измерений в высокомном диапазоне.

Форм-фактор электрода для программирования ТераОмметра: F = 7,33.

Соединительный кабель имеет длину 1,5 м.

- 65 высокоточных покрытых золотом контактов;
- диапазон измерения от 10⁵ до 10¹³ Ом при испытательном напряжении в 100 В;
- макс. испытательное напряжение 500 В;
- подключается к приборам Milli-TO 3 или TO-3;
- 1,5 метровый соединительный кабель формфактор электрода F = 7,33;
- размеры:

внутреннее кольцо: диаметр 50 мм внешнее кольцо: диаметр 20 мм

расстояние между

электродами: 15 мм

• минимальный размер образца 55 мм х 55 мм

HOW16 с прибором Milli-TO 3

Электрод для высокоомных испытаний с защитным кольцом

FE 50

для измерения поверхностного сопротивления в соответствии со стандартами DIN/IEC 60 093 и др.

• высококачественная сталь (V2A)

• диаметр области измерения 50 мм

диаметр защитного 80 мм внешний кольца: 60 мм внутренний

расстояние 5 мм

измерений:

 оптимальная область измерения для определения объемного сопротивления: 23.76 см²

• макс. испытательное 500 B напряжение

• рекомендуемые диапазоны измерений:

- при испытательном

напряжении в 100 В: 10^5 to 10^{15} Ом

- при испытательном

напряжении в 500 В: 10⁶ to 10¹⁵ Ом

- при испытательном

напряжении в 1В: 10^3 to 10^{13} Ом

Электрод с защитным кольцом FE 50 подходит для стандартных измерений объемного и поверхностного сопротивления.

Вместе с прибором Milli-TO 3 или TO-3 имеется возможность точных измерений в высокомном диапазоне.

С дополнительным объемным кольцом измерительное расстояние может достигать размера в 1 мм для определения объемного сопротивления.

3604FE

Предназначен для измерения объемного сопротивления в соответствии с DIN IEC 60093 и др.

Электрод **3604FE** подходит для проведения универсальных измерении объемного сопротивления на малых пластинчатых образцах.

Вместе с прибором Milli-TO 3 или TO-3 имеется возможность точных измерений в высокоомном диапазоне.

Изоляция PTFE обеспечивает высокую точность измерения.

Измерение объемного сопротивления с использованием GP 14 (опция) и Milli-TO 3 (опция)

- ▶ высококачественная сталь (V2A)
- ▶ внутренний диаметр электрода: 24,5 мм
- диаметр защитного кольца: 26,2 мм внутренний

46 мм наружний

- ▶ размер измерительного зазора: 1 мм
- ▶ эффективная площадь измерения: 5,0 см²
- ▶ максимальное испытательно напряжение: 500 В
- рекомендуемые диапазоны измерений:

при 100 В 10⁵ до 10¹⁵ Ом при 500 В 10⁶ до 10¹⁵ Ом при 1 В 10³ до 10¹³ Ом

▶ диаметр GP 14: 140 мм

Электрод 3604FE с измерительным столиком GP 14 (опция)

FE 25-1

предназначен для измерения объемного и поверхностного сопротивления в соответствии со стандартами ASTM D 257 и другими

GP 14 опция

- высококачественная сталь (V2A)
- диаметр измерительного электрода: 25 mm
- диаметр защитного кольца:50 мм наружный 38 мм внутренний

измерительный зазор: 6,5 MM

оптимальная область измерения

для определения

объемного сопротивления: 7.79 см²

500 V мак. напряжение:

рекомендуемые диапазоны измерений:

10⁵ to 10¹⁵ Ом м при 100 V при 500 V 106 до 1015 Ом м при 1 V 10³ to 10¹³ Ом м

Электрод FE 25-1 с защитным кольцом подходит для универсальных измерений объемного и поверхностного сопротивления.

Вместе с прибором Milli-TO 3 или TO-3 имеется возможность точных измерений в высокоомном диапазоне.

Из-за небольших размеров FE 25-1 очень хорошо подходит для небольших образцов.

Измерение поверхностного сопротивления с использованием GP 14 (опция) и Milli-TO 3 (опция)

Accessories: baseplate GP 14 High-Ohm Measuring cable set Conductive elastomer Conducting gel

FE 25

предназначен для измерения объемного и поверхностного сопротивления в соответствии со стандартами DIN IEC 60093 и другими

Электрод **FE 25** с защитным кольцом подходит для универсальных измерений объемного и поверхностного сопротивления.

Вместе с прибором Milli-TO 3 или TO-3 имеется возможность точных измерений в высокоомном диапазоне.

Из-за малого размера **FE 25** очень хорошо подходит для более мелких образцов. Он используется везде, где стандартный электрод **FE 50** слишком велик.

С дополнительным объемным кольцом измерительное расстояние может достигать размера в 1 мм для определения объемного сопротивления.

• высококачественная сталь (V2A)

диаметр измерительного электрода: 25 мм

диаметр защитного кольца: 55 мм наружный

сверху: 35 мм внутренний нижний: 27 мм внутренний

измерительный зазор: 5 мм или 1 мм

• оптимальная область измерения

для определения

объемного сопротивления: 7,07 cm² (5 мм зазор)

5,31 cm² (1 mm gap)

мак. напряжение: 500 V

• рекомендуемые диапазоны измерений:

при 100 V $10^5 \text{ to } 10^{15} \text{ Ом M}$ при 500 V $10^6 \text{ до } 10^{15} \text{ Ом M}$ при 1 V $10^3 \text{ to } 10^{13} \text{ Ом M}$

MILL Led Test Ownerster Mill-TO3

1850/H

19653, 33E6

V.ORI

FIRST

FIR

Измерение поверхностного сопротивления с использованием GP 14 (опция) и Milli-TO 3 (опция)

Accessories: baseplate GP 14 High-Ohm Measuring cable set Conductive elastomer Conducting gel

FE 76

Для измерения объемного и поверхностного сопротивления в соответствии со стандартами ASTM D 257 и другими

Электрод с защитным кольцом **FE 76** подходит для проведения универсальных измерений объемного и поверхностного сопротивления.

Вместе с прибором Milli-TO 3 или TO-3 имеется возможность точных измерений в высокоомном диапазоне.

диаметр измерительного электрода: 76 мм

диаметр защитного кольца: 100 мм (наружный)

88 мм (внутренний)

измерительный зазор: 6 мм

оптимальная область измерения

для определения

объемного сопротивления: 52.81 cm²

мак. напряжение: 500 В

рекомендуемые диапазоны измерений:

при 100 В 10⁵ до 10¹⁵ Ом при 500 В 10⁶ до 10¹⁵ Ом при 1 В 10³ до 10¹³ ОМ

Измерение поверхностного сопротивления с заземленным столиком GP 14 (опция) и Milli-TO 3 (опция)

Аксессуары: Измерительный столик GP 14 Набор высокоомных измерительных кабелей Проводящий эластомер Проводящий гель

Отводящий электрод

AE 30-ANSI

для измерения сопротивления в соответствии со стандартом ANSI/ESD STM11.11

Электрод **AE 30-ANSI** был разработан специально для измерения поверхностного сопротивления на антистатических плоских материалах в соответствии с ANSI/ESD STM 11.11

Электрод **AE 30-ANSI** очень хорошо подходит для измерения объемного сопротивления так-как измерительный зазор между измерительным электродом и защитным кольцом составляет 13.325 мм. Такой измерительный зазор уменьшает ток утечки.

Вес электрода **AE 30-ANSI** и использование проводящего эластомера при проведении измерений гарантирует оптимальный контакт с измеряемым образцом.

Вместе с прибором Milli-TO 3 или TO-3 имеется возможность проведение точных измерений в высокоомном диапазоне.

▶ высококачественная сталь (V2A)

• измерительная область из проводящего эластомера

диаметр измеряемой области: 30,5 мм

диаметр защитного кольца:

63,5 MM наружный: внутренний: 57,15 MM

2,27 кг ▶ Bec:

▶ BNC- and V_м- разъем

▶ максимальное напряжение: 500 В

рекомендуемые диапазоны измерений:

для 100 В 10⁵ до 10¹5 Ом 106 до 1015 Ом для 500 В для 1В 10³ до 10¹³ Ом

Аксессуары:

Измерительный столик GP 14 Изоляционный материал ІР 14

Комплект высокоомных измерительных кабелей

Измерение поверхностного сопротивления с использованием электрода AE 30-ANSI и заземленного столика GP 14 (опция) с использованием Milli TO-3 (опция)

2013 FISCHER ELEKTRONIK Subject to changes without prior notice / Errors and omissions expected. EL57WE01.CDR

Отводящий электрод

AE 30-DIN

для измерения сопротивления в соответствии со стандартом DIN EN 61340-2-3

Электрод **AE 30-DIN** был разработан специально для измерения поверхностного сопротивления на антистатических плоских материалах в соответствии с DIN EN 61340-2-3

Электрод **AE 30-DIN** очень хорошо подходит для измерения объемного сопротивления так-как измерительный зазор между измерительным электродом и защитным кольцом составляет 13.25 мм. Такой измерительный зазор уменьшает ток утечки.

Вес электрода **AE 30-DIN** и использование проводящего эластомера при проведении измерений гарантирует оптимальный контакт с измеряемым образцом.

Вместе с прибором **Milli-TO 3** или **TO-3** имеется возможность проведение точных измерений в высокоомном диапазоне.

▶ высококачественная сталь (V2A)

▶ измерительная область из проводящего эластомера

диаметр измеряемой области: 30,5 мм

диаметр защитного кольца:

наружный: 63,0 мм внутренний: 57,0 мм

▶ вес: 2,5 кг

▶ BNC - и V_м- разъем

▶ максимальное напряжение: 500 В

• рекомендуемые диапазоны измерений:

для 100 В 10⁵ до 10¹⁵ Ом для 500 В 10⁶ до 10¹⁵ Ом для 1 В 10³ до 10¹³ Ом

Аксессуары:

Измерительный столик GP 14
Изоляционный материал IP 14
Комплект высокоомных измерительных кабелей

Измерение поверхностного сопротивления с использованием электрода **AE 30-DIN** и заземленного столика **GP 14** (опция) с использованием **Milli TO-3** (опция)

2011 FISCHER ELEKTRONIK Subject to changes without prior notice / Errors and omissions expected. EL63WE01.CDR

Высокоомный напольный электрод

FBE 3 u FBE 4

для измерения напольных покрытий и установленных полов в соответствии со стандартом DIN IEC 61340-4-1

Электроды FBE 3 и FBE 4 являются подходящими для различных измерений поверхностного и объемного сопротивлений.

Сопротивление по отношению к земле, измеренное одним электродом между землей или предоставленной точкой заземления, на напольных покрытиях или установленном полу

Поверхностное сопротивление между двумя точками, измеренное между двумя электродами, которые установлены на рабочей стороне покрытия пола или установленного пола.

Объемное сопротивление, измеренное между одним электродом, который расположен на рабочей стороне напольного покрытия, и его задней стороне.

Вместе с прибором Milli-TO 3 или TO-3 имеется возможность проведение точных измерений в высокоомном диапазоне.

- ▶ высококачественная сталь (V2A)
- ▶ измерительная область FBE 3: высококачественная сталь (V2A)
- ▶ измерительная область FBE 4: проводящий эластомер
- диаметр измеряемой области: 65 мм

▶ BEC FBE 3: 5 KΓ▶ BEC FBE 4: 2,5 KΓ

▶ BNC - разъем

▶ максимальное напряжение: 500 В

рекомендуемые диапазоны измерений:

для $100 \, \text{B}$ $10^5 \, \text{до} \ 10^{15} \, \text{Ом}$ для $500 \, \text{B}$ $10^6 \, \text{до} \ 10^{15} \, \text{Ом}$ для $1 \, \text{B}$ $10^3 \, \text{до} \ 10^{13} \, \text{Ом}$

Измерение объемного сопротивления с использованием электрода FBE 4 и пластины заземления GP 14 (опция) подключенных к Milli TO-3 (опция)

Аксессуары:

Изоляционная пластина РММА 600 x 600 x 5 мм Пластина заземления V2A 600 x 600 x 6 мм Комплект высокоомных измерительных кабелей

Электрод для высокоомных испытаний в виде эластичной пластины

3501 FE

для измерения поверхностного сопротивления на пленках в соответствии со стандартами DIN 53 482 / VDE 0303T3

- электрод соответствует стандарту DIN 53 482 / VDE 0303T3;
- высокоточные измерительные полосы;
- для испытаний на пленках;
- интервалы между полосами 10 мм;
- измерительная длина 10 мм;
- измерительная область 10 см²;
- подключается к Milli-TO 3 или TO-3;
- диапазон измерения 10⁵ to 10¹⁵ Ом при испытательном напряжении в 100 В

Электрод в виде эластичной пластины 3501 FE был разработан специально для измерения высокоомного напряжения на поверхности пленок

Высокоточные измерительные полосы, расположенным на ленте размером 100 мм на интервале в 10 мм, формируют измерительную область, указанную в стандарте DIN 53 482. Измерение происходит очень легко путем простого соединения и четкой установки измерительных настроек.

Порошковый электрод

PE 01

для измерения объемного сопротивления порошковых образцов

- специально для измерений на измельченных (порошкообразных) образцах;
- диаметр области измерения 50 мм;
- поверхность измерения 19,6 см²;
- максимальная высота насыпаемого образца 80 мм:
- диапазон измерения 10⁵ to 10¹² Ом при испытательном напряжении в 100 В;
- максимальное испытательное напряжение 500 В;
- вес внутреннего электрода 2000 г;
- соединение через BNC-конктор и 4 мм лабораторный штепсель
- опорная плитка съемная, имеется возможность ее очистить;
- при экстремально высоких измерениях сопротивления в условиях высокого шума, измерительная система должна быть дополнительно оборудована защитным экраном или камерой.

Порошковый электрод PE01 предназначен для определения высокоомного объемного сопротивления на измельченных (порошкообразных) образцах.

Простой контакт и ясная подготовка к измерению позволяет с легкостью проводить испытания.

Электрод для высокоомных испытаний на тканях

TE 50

для измерения объемного и поверхностного удельного сопротивления на тканях в соответствии со стандартами DIN 54345-1, DIN EN 1149-1 и DIN EN 1149-2

с прибором Milli-TO3

 электрод в виде кольца из высококачественной стали и алюминия

• диаметр

измерительной 50,4 мм

поверхности:

 внутренняя измерительная

поверхность: 1995,0 мм²

диаметр защитного 89,0 мм внешний кольца: 69,2 мм внутренний

• диаметр опорной

плиты: 110 мм

• общий вес: 1020 г (± 20 г)

• вес внутреннего

электрода: 460 г (± 10 г)

• вес электрода в

виде кольца : 560 г (± 10 г)

макс. измерительное напряжение 500 В

• рекомендуемые диапазоны измерений:

- при испытательном

напряжении в 100 В: 10⁵ to 10¹⁵ Ом

- при испытательном

напряжении в 500 В: 10^6 to 10^{15} Ом

- при испытательном

напряжении в 1В: 10³ to 10¹³ Ом

• изоляционный цилиндр и диск для опорной плиты

Электрод с защитным кольцом ТЕ 50 предназначен для множества измерений поверхностного и объемного сопротивления на текстильных тканях, пряже и волокнах. Вместе с прибором Milli-TO 3 или TO-3 имеется возможность точных измерений в высокомном

Изоляционный цилиндр используется при измерении объемного сопротивления на пряже и волокнах.

Измерение поверхностного сопротивления на заземленной опорной плите.

Измерение объемного сопротивления на пряже и волокнах

Высокоомный электрод для текстильных полос

TSE 1

для измерения сопротивления на образцах из текстиля в соответствии со стандартом DIN 54345

Электрод TSE 1 предназначен для измерения электрического сопротивления на образцах из полос текстильных тканей, которые включают в своем составе примеси материалов, сопротивление которого значительно ниже, чем у текстильного материала.

Особенностью электрода **TSE 1** является наличие возможности проводить измерения на образцах ткани разной длинны.

FE FISCHER

Вместе с прибором Milli-TO 3 или TO-3 имеется возможность точных измерений в высокоомном диапазоне.

measurement with Milli-TO 3 (optional)

▶ контактная поверхность из высококачественной стали (V2A)

▶ размер электрода Ш/Д/В: 450 x 235 x 100 мм

▶ размер текстильного образца: макс. 350 x 50 мм


▶ Bec: около. 4,5 кг

▶ соединение BNC / 4 мм

▶ максимальное напряжение: 500 В

рекомендуемые диапазоны измерений:

10⁶ до 10¹⁵ Ом 10³ до 10¹³ Ом

Аксессуары:

Комплект высокоомных измерительных кабелей

Электрод

HOF 1

для измерения поверхностного сопротивления токопроводящих слоев в аэрокосмической промышленности в соответствии со стандартом DIN 65181

HOF 1 включает 2 игольчатых электрода;

измерения поверхностного сопротивления соответствуют стандарту DIN 65 181;

- подходит для измерения сопротивления на выпуклых и вогнутых образцах в аэрокосмической промышленности;
- 2 игольчатых электрода выполненных из кремний органического эластомера;
- диаметр электрода 4 мм;
- расстояние между электродами 50 мм;
- подключаем к приборам Milli-TO 3 или TO-3;
- диапазон сопротивления 1 Ом до 100 Ом;
- испытательное напряжение до 500 В

электродов и изоляционным держателем между Игольчатые электроды сделаны из проводящего

Ручной электрод для измерения поверхностного сопротивления HOF1 состоит из 2 игольчатых

кремнийорганического эластомера. Посредством 2 интегрированных портов ручной электрод HOF 1 может быть подключен к приборам Milli-TO 3 или ТО-3. Простое 4мм гнездо так же позволяет соединить электрод с приборами других производителей. Использование кремнийорганического эластомера позволяет измерять поверхностное сопротивление на выпуклых и вогнутых образцах.

HOF 1 - 4мм соединительное гнездо

Измерительный электрод

HOF 2

для измерения поверхностного сопротивления токопроводящих слоев в аэрокосмической промышленности основанный на стандарте DIN 65181 в соответствии с требованиями AIRBUS Radom Test NTX-CMM 53-15-11.

- Измерения поверхностного сопротивления основано на соответствии DIN 65181 в соответствии с IRBUS Radom Test NTXCMM 53-15-11;
- оптимизирован для измерений на вогнутых и выпуклых образцах в аэрокосмической промышленности;
- 2-х точечный электрод с контактами выполненными из токопроводящего силиконового эластомера;
- диаметр электрода 4 мм;
- расстояние между электродами 50 мм;
- подключаем к приборам Milli-TO 3 или TO-3;
- диапазон сопротивления 1 Ом до 100 МОм;
- испытательное напряжение до 500 В

HOF 2

Ручной электрод для измерения поверхностного сопротивления **HOF-2** состоит из 2-х точечных электродов и изоляционным держателем между ними.

Точечные электроды выполнены из токопроводящего силиконового эластомера.

Посредством 2-х интегрированных портов электрод **HOF-2** может быть подключен к приборам Milli-TO 3 или TO-3.

Простое 4мм гнездо так же позволяет соединить электрод с приборами других производителей. Использование токопроводящего силиконового эластомера позволяет измерять поверхностное сопротивление на выпуклых и вогнутых образцах.

Электрод ы ЕН15/10 и ЕН15/20 подходят для

Электрод для высокоомных испытаний

EH 15/10, EH 15/20

для измерения объемного и поверхностного сопротивления на небольших пластинках в соответствии со всеми основными стандартами

ЕН15/20 с прибором Milli-TO 3

• диаметр EH 15/10:

внутренний электрод: 10 MM

защитное кольцо: внутренний 12 мм

внешний 18 мм

EH 15/20:

внутренний электрод: 20 мм

внутренний 25 мм защитное кольцо:

внешний 31 мм

подходит для испытаний на небольших пластинках;

промежуток измерения:

1 мм (EH 15/10) 2,5 мм (EH 15/20)

область измерения для измерения поверхностного сопротивления:

 $34,56 \text{ MM}^2 \text{ (EH 15/10)}$ 176,7 mm² (EH 15/20)

- измерение объемного сопротивления с помощью защитного кольца;
- подключаем к Milli-TO 3 и TO-3;
- диапазон измерения 10^5 to 10^{15} Ом при испытательном напряжении в 100 В;

EH 16

для измерения объемного сопротивления без защитного кольца на небольших пластинках или пленках в соответствии с основными стандартами.

- диаметр электрода:
 - 5 MM/ 10 MM/ 15 MM/ 20 MM/ 25,3 MM
- подложка под образец:

50 x 50 мм

- подключаем к Milli-TO 3 и TO-3;
- диапазон измерения 10⁵ to 10¹⁵ Ом при испытательном напряжении в 100 В;

Электрод ЕН16 подходит для измерения сопротивления на небольших образцах или пленках.

Изменяемые области измерения с легкостью предоставляют возможность анализировать гомогенность объемного сопротивления. Измерения с самоклеющимися пленками и флисом проводятся в зафиксированном состоянии.

Подложку под образца и электрод легко подготовить к испытанию, легко очистить после проведения измерений.

Вместе с прибором Milli-TO 3 или TO-3 имеется возможность точных измерений в высокомном диапазоне.

Образцы с объемным сопротивлением от 300 Ом метр до Тера Ом метр требуют для измерения испытательную мощность от 1 В до 500 В.

ЕН 16 с прибором Milli-TO 3

Высокоомный жидкостной электрод

FSE 3704

для измерения удельного объемного сопротивления жидких электроизоляционных материалов в соответствии со стандартами DIN EN 60 247 (ГОСТ 6581-75)

Will the same of t

• высококачественная сталь (V2A)

электрическая емкость между внутренним и внешним электродом: 60 пФ

постоянная ячейки: 6.8

объем ячейки: 45 см³
 температуростойкость: 250 °C
 максимальное напряжение: 500 В

рекомендуемые диапазоны измерений :

при 1 В: 10³ до 10¹³ Ом при 100 В: 10⁵ до 10¹⁵ Ом при 500 В: 10⁶ до 10¹⁵ Ом Электрод **FSE-3704** подходит для измерения объемного сопротивления жидких электроизоляционных материалов в соответствии со стандартами DIN EN 60247 и **ГОСТ 6581-75**. Электрод соответствует структуре представленной в этих стандартах.

Вместе с прибором Milli-TO 3 или TO-3 имеется возможность точных измерений в высокоомном диапазоне.

Данный электрод очень легко разбирается для очистки.

Высокоомный жидкостной электрод

FSE 2

для измерения объемного удельного сопротивления жидких электроизоляционных материалов в соответствии с ГОСТ 6581-75

- высококачественная сталь (V2A)
- пропускная способность при отсутствии нагрузки между внутренним и наружным электродом: 15 пФ
- объем жидкости: 40 см³
- отверстие для температурного датчика
- макс. испытательное напряжение: 500 В
- рекомендуемые диапазоны измерений:
- при испытательном
- напряжении в 100 В: 10⁵ to 10¹⁵ Ом
- при испытательном
- напряжении в 500 В: 10⁶ to 10¹⁵ Ом
- при испытательном
- напряжении в 1В: 10³ to 10¹³ Ом

Жидкостной электрод FSE 2 подходит для измерение объемного сопротивления жидких электроизоляционных материалов в соответствии с ГОСТ 6581-75. Электрод соответствует характеристикам, представленным в этом стандарте.

Вместе с прибором Milli-TO 3 или TO-3 имеется возможность проведения точных измерений в высокомном диапазоне.

Электрод может быть легко разобран на составные части для очистки.

Четырехполюсный электрод

4P-1

для измерения электрического сопротивления проводящих материалов с помощью четырехполюсного метода Кельвина в соответствии со стандартами DIN EN ISO 3915 (ГОСТ 20214-74)

- потенциальный электрод, состоящий из двух «ножевых» контактов, расположенных друг за другом в соответствии со стандартами DIN EN ISO 3915
- длина «ножевых» контактов: 20 мм
- расстояние между «ножевыми» контактами: 10 мм
- прижимная сила «ножевых» контактов: 0,6 H
- привод шпиндель для точного позиционирования
- мобильный держатель образца
- размеры образца: 70 x 10 x 1 мм мин.
- 150 x 20 x 20 мм макс.
- подключаем к Milli-TO 3 и MO-3
- диапазон измерений: от 100 мОм (с разрешением 10 мкмОм) до 180 КОм

Четырехполюсный электрод был разработан для измерения электрического объемного и поверхностного сопротивления проводящих материалов с помощью четырехполюсного метода Кельвина в соответствии со стандартами DIN EN ISO 3915.

Особая конструкция данного электрода, в частности «ножевые» контакты, находящиеся один за другим, позволяет просто и надежно осуществлять контакт с поверхностью испытуемого образца.

Горизонтальный мобильный держать образца позволяет проводить измерения в разных его местах без необходимости его повторного размещения иным образом.

Вместе с прибором Milli-TO 3 или MO-3 имеется возможность точных измерений в низкоомном диапазоне.

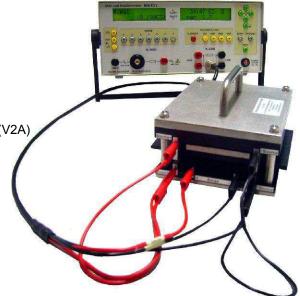
Держатель образца также может быть использован для высокоомных измерений вместе с тераомметром в самых непредсказуемых уровнях измерения и даже в случае выхода за пределы измерений в самом высоком диапазоне.

4Р-1 с прибором Milli-TO 3

Четырехполюсный электрод

VE - D 991

предназначен для измерения объемного сопротивления электропроводящих и антистатических материалов используя четырехполюсный метод (метод Кельвина) в соответствии со стандартом ASTM D 991


Четырехполюсный электрод VE - D 991 был разработан для измерения объемного сопротивления электропроводящих и антистатических материалов в соответствии с четырехполюсным методом (методом Кельвина).

Структура электрода соответствует стандарту ASTM D 991.

Конструкция электрода позволяет надежно фиксировать исследуемые образцы.

Для проведения измерений и получения точных результатов рекомендуем использовать данный электрод совместно с Milli -TO 3 или MO 3.

- конструктивно выполнен из высококачественной стали (V2A) и черного ПВХ
- контактные поверхности изготовлены из высококачественной стали (V2A)
- электрод соответствует стандарту ASTM D
- расстояние между потенциалом электрода: 50 мм
- размер образца (мм): мин. длинна 100 макс. глубина 150 макс. высота 25
- подключается к Milli-TO 3 а так же MO 3
- вес потенциального электрода 0,9 кг
- вес токового электрода 3,0 кг

Электрод VE-D 991 подключен к Milli-TO 3 (опция)

Приспособление для измерения кабеля

KMV 1000

предназначен для измерения электрического сопротивления кабеля, проволоки и других метериалов в соответствии со стандартом DIN IEC 60468

Приспособление для измерения кабеля KMV 1000 было разработано для измерения электрического сопротивления кабеля, проволоки и других материалов с помощью омметра.

Для проведения измерений и получения точных результатов рекомендуем использовать данное устройство совместно с Milli -TO 3 или MO 3.

Конструкция KMV 1000 позволяет выполнять измерения на проволоки сечением от 0,1 мм² до 100 мм². Расстояние потенциальных лезвий составляет, как описано в стандарте, ровно 1000 мм.

Пластиковая направляющая, включенная в поставку, препятствует провалу тонких проводов. Специальный паз в направляющем рельсе защищает образец от колебаний температуры и препятствует растяжению образца.

• сечение провода: от 0,1 мм² до 100 мм²

• расстояние потенциальных лезвий: 1000 мм +/- 0,2 мм

• соединение: 4 мм разъем

• токовое соединение: 4 мм разъем и

болтовое соединение

• максимальный ток: 100 А

• размер в мм (Ш/Д/В): 1300 x 120 x 150

• вес: 9 кг

